1,924 research outputs found

    The implications of alternative developer decision-making strategies on land-use and land-cover in an agent-based land market model

    Get PDF
    Land developers play a key role in land-use and land cover change, as\ud they directly make land development decisions and bridge the land and housing\ud markets. Developers choose and purchase land from rural land owners, develop\ud and subdivide land into parcel lots, build structures on lots, and sell houses to residential households. Developers determine the initial landscaping states of developed parcels, affecting the state and future trajectories of residential land cover, as well as land market activity. Despite their importance, developers are underrepresented in land use change models due to paucity of data and knowledge regarding their decision-making. Drawing on economic theories and empirical literature, we have developed a generalized model of land development decision-making within a broader agent-based model of land-use change via land markets. Developer’s strategies combine their specialty in developing of particular subdivision types, their perception of and attitude towards market uncertainty, and their learning and adaptation strategies based on the dynamics of the simulated land and housing markets. We present a new agent-based land market model that includes these elements. The model will be used to experiment with these different development decision-making methods and compare their impacts on model outputs, particularly on the quantity and spatial pattern of resultant land use changes. Coupling between the land market and a carbon sequestration model, developed for the larger SLUCE2 project, will allow us, in future work, to examine how different developer’s strategies will affect the carbon balance in residential\ud landscape

    Persistent charge and spin currents in a 1D ring with Rashba and Dresselhaus spin-orbit interactions by excitation with a terahertz pulse

    Full text link
    Persistent, oscillatory charge and spin currents are shown to be driven by a two-component terahertz laser pulse in a one-dimensional mesoscopic ring with Rashba-Dresselhaus spin orbit interactions (SOI) linear in the electron momentum. The characteristic interference effects result from the opposite precession directions imposed on the electron spin by the two SOI couplings. The time dependence of the currents is obtained by solving numerically the equation of motion for the density operator, which is later employed in calculating statistical averages of quantum operators on few electron eigenstates. The parameterization of the problem is done in terms of the SOI coupling constants and of the phase difference between the two laser components. Our results indicate that the amplitude of the oscillations is controlled by the relative strength of the two SOI's, while their frequency is determined by the difference between the excitation energies of the electron states. Furthermore, the oscillations of the spin current acquire a beating pattern of higher frequency that we associate with the nutation of the electron spin between the quantization axes of the two SOI couplings. This phenomenon disappears at equal SOI strengths, whereby the opposite precessions occur with the same probability.Comment: 10 pages 9 figure

    Lifetime elongation for wireless sensor network using queue-based approaches

    Get PDF
    A wireless sensor network (WSN) is envisioned as a cluster of tiny power-constrained devices with functions of sensing and communications. Sensors closer to a sink node have a larger forwarding traffic burden and consume more energy than nodes further away from the sink. The whole lifetime of WSN is deteriorated because of such an uneven node power consumption patterns, leading to what is known as an energy hole problem (EHP). From open literatures, most research works have focused on how to optimally increase the probability of sleeping states using various wake-up strategies. In this article, we propose a novel power-saving scheme to alleviate the EHP based on the N-policy M/M/1 queuing theory. With little or no extra management cost, the proposed queue-based power-saving technique can be applied to prolong the lifetime of the WSN economically and effectively. A mathematical analysis on the optimal control parameter has been made in detail. Focusing on many-to-one WSN, numerical and network simulation results validate that the proposed approach indeed provides a feasibly cost-effective approach for lifetime elongation of WSN

    Dual paths node-disjoint routing for data salvation in mobile ad hoc

    Get PDF
    The operational patterns of multifarious backup strategies on AODV-based (Ad-hoc On-Demand Vector) routing protocols are elaborated in this article. To have a broader picture on relevant routing protocols together, variants of AODV-based backup routing protocols are formulated by corresponding algorithms, and also each of them are simulated to obtain the necessary performance metrics for comparisons in terms of packet delivery ratio, average latency delay, and the normalized routing load. Then to make the process of data salvation more efficiently in case of link failure, we explore the possibility of combining the AODV backup routing strategy and on-demand node-disjoint multipath routing protocols. This article proposes an improved approach named DPNR (Dual Paths Node-disjoint Routing) for data salvation, a routing protocol that maintains the only two shortest backup paths in the source and destination nodes. The DPNR scheme can alleviate the redundancy-frames overhead during the process of data salvation by the neighboring intermediate nodes. Our simulation results have demonstrated that DPNR scheme delivers good data delivery performance while restricting the impacts of transmission collision and channel contention. The mathematical rationale for our proposed approach is stated as well

    Electron correlation energy in confined two-electron systems

    Full text link
    Radial, angular and total correlation energies are calculated for four two-electron systems with atomic numbers Z=0-3 confined within an impenetrable sphere of radius R. We report accurate results for the non-relativistic, restricted Hartree-Fock and radial limit energies over a range of confinement radii from 0.05 - 10 a0. At small R, the correlation energies approach limiting values that are independent of Z while at intermediate R, systems with Z > 1 exhibit a characteristic maximum in the correlation energy resulting from an increase in the angular correlation energy which is offset by a decrease in the radial correlation energy

    Advances in the proposed electromagnetic zero-point field theory of inertia

    Get PDF
    A NASA-funded research effort has been underway at the Lockheed Martin Advanced Technology Center in Palo Alto and at California State University in Long Beach to develop and test a recently published theory that Newton's equation of motion can be derived from Maxwell's equations of electrodynamics as applied to the zero-point field (ZPF) of the quantum vacuum. In this ZPF-inertia theory, mass is postulated to be not an intrinsic property of matter but rather a kind of electromagnetic drag force that proves to be acceleration dependent by virtue of the spectral characteristics of the ZPF. The theory proposes that interactions between the ZPF and matter take place at the level of quarks and electrons, hence would account for the mass of a composite neutral particle such as the neutron. An effort to generalize the exploratory study of Haisch, Rueda and Puthoff (1994) into a proper relativistic formulation has been successful. Moreover the principle of equivalence implies that in this view gravitation would also be electromagnetic in origin along the lines proposed by Sakharov (1968). With regard to exotic propulsion we can definitively rule out one speculatively hypothesized mechanism: matter possessing negative inertial mass, a concept originated by Bondi (1957) is shown to be logically impossible. On the other hand, the linked ZPF-inertia and ZPF-gravity concepts open the conceptual possibility of manipulation of inertia and gravitation, since both are postulated to be electromagnetic phenomena. It is hoped that this will someday translate into actual technological potential. A key question is whether the proposed ZPF-matter interactions generating the phenomenon of mass might involve one or more resonances. This is presently under investigation.Comment: Revised version of invited presentation at 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 13-15, 1998, Cleveland, OH, 10 pages, no figure

    One-Loop NMHV Amplitudes involving Gluinos and Scalars in N=4 Gauge Theory

    Full text link
    We use Supersymmetric Ward Identities and quadruple cuts to generate n-pt NMHV amplitudes involving gluinos and adjoint scalars from purely gluonic amplitudes. We present a set of factors that can be used to generate one-loop NMHV amplitudes involving gluinos or adjoint scalars in N=4 Super Yang-Mills from the corresponding purely gluonic amplitude.Comment: 16 pages, JHEP versio

    Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists

    Get PDF
    The microbial communities harbored in the gut and fungus comb of the fungus-growing termite Odontotermes formosanus were analyzed by both culture-dependent and culture-independent methods to better understand the community structure of their microflora. The microorganisms detected by denaturing gradient gel electrophoresis (DGGE), clonal selection, and culture-dependent methods were hypothesized to contribute to cellulose-hemicellulose hydrolysis, gut fermentation, nutrient production, the breakdown of the fungus comb and the initiation of the growth of the symbiotic fungus Termitomyces. The predominant bacterial cultivars isolated by the cultural approach belonged to the genus Bacillus (Phylum Firmicutes). Apart from their function in lignocellulosic degradation, the Bacillus isolates suppressed the growth of the microfungus Trichoderma harzianum (genus Hypocrea), which grew voraciously on the fungus comb in the absence of termites but grew in harmony with the symbiotic fungus Termitomyces. The in vitro studies suggested that the Bacillus sp. may function as mutualists in the termite-gutfungus-comb microbial ecosystem
    • 

    corecore